

Microwave Signal Generator SMR

High-performance, cost-effective and reliable up to 40 GHz

- Instrument family with 4 models:
- SMR20 10 MHz to 20 GHz
- SMR27 10 MHz to 27 GHz
- SMR30 10 MHz to 30 GHz
- SMR40 10 MHz to 40 GHz
- Standard version: CW generator with pulse modulation and digital frequency sweep
- Easily upgradeable to AM-FM signal generator and synthesized sweeper with analog ramp sweep thanks to flexible options concept
- Optional pulse generator for radar and EMC applications
- Optional IF input for upconversion of digitally modulated IF signals
- Compact, lightweight, userfriendly: ideal in the lab and for field applications
- 3-year calibration cycle

The allrounder - designed for future-proofness

Maximum ease of operation

- High-contrast LC display
- Online help including IEC/IEEEbus commands
- All settings simple and selfexplanatory
- User-assignable keys
- One-hand operation with EasyWheel

Wide frequency range

- SMR20: 1 GHz to 20 GHz
- SMR27: 1 GHz to 27 GHz
- SMR30: 1 GHz to 30 GHz
- SMR40: 1 GHz to 40 GHz
- Optional extension of lower frequency limit to 10 MHz (SMR-B1))
- Frequency resolution 1 kHz, optional 0.1 Hz (SMR-B3)

High, levelled output

 power- SMR20 >+ 10 dBm (at 20 GHz)
- SMR27 >+11 dBm (at 27 GHz)
- SMR30/40 >+9 dBm (at $30 / 40 \mathrm{GHz}$)

High precisision output level

- High precision, frequen-cy-response-compensated level control
- The setting range can be extended to - 130 dB with the optional RF attenuator
(option SMR-B15/B17)

Three instruments in one

- CW generator with pulse modulation capability (standard version)
- Signal generator with AM, FM and LF generator (option SMR-B5)
- Synthesized sweeper with analog ramp sweep (option SMR-B4)

Optional pulse generator

 (SMR-B14)- Operating modes: single pulse, double pulse, externally triggered, gate mode
- Pulse reperition 100 ns to 85 s
- Pulse width 20 ns to 1 s

Sweep capabilities

- Digital RF and level sweep (standard version)
- Analog ramp sweep (RF sweep, option SMR-B4)
- Max. sweep rate for ramp sweeps $\min .600 \mathrm{MHz} / \mathrm{ms}$ (frequency $>2 \mathrm{GHz}$)
- Digital sweep of LF generator (with option SMR-B5)
- 10 freely selectable frequency markers for RF sweep
- Operating modes: automatic, single-shot, manual, externally triggered

Optional IF input (SMR-B23/

 SMR-B24)- Built-in upconverter for digitally modulated IF signals from DC to 700 MHz
- Ideal for use with Vector Signal Generator SMIQ and I/Q Modulation Generator AMIQ

CW, signal generator or synthesized sweep generator...

Memory

- Space for 50 complete instrument setups
- Convenient memory sequence modes

SMR as CW generator

The SMR family comprises four basic models designed as CW generators with pulse modulation capability. The three models have a common lower frequency limit of 1 GHz and provide frequency coverage up to 20 GHz
(SMR20), 27 GHz (SMR27), 30 GHz (SMR30) and 40 GHz (SMR40).
The lower limit can be expanded to 10 MHz by the optional Frequency Extension 0.01 to 1 GHz (SMR-B11).

Offering an excellent price/performance ratio, each of the four basic mod-
els is ideal for the user wishing to enter the field of microwave testing at an affordable price. Should measurements become more demanding - no problem with SMR: all basic models can be upgraded fast and easily by means of options to give a signal generator with AM/FM modulation capability or a synthesized sweep generator featuring fast, fully synthesized analog ramp sweep.

Excellent spectral purity

SMR stands out from other generators for its excellent spectral purity. Advanced frequency synthesis with fractional-N divider makes for low SSB phase noise and high spurious suppression, both of which are for example prerequisites for reliable receiver measurements. Modern microwave filters in the output path of the instrument ensure excellent harmonics suppression. This is necessary to obtain con-
clusive results in scalar network analysis measurements.

High-precision output level

Microwave signal generators are frequently used for calibrating test receivers. This task calls for a highly accurate and stable output level settable with high resolution. This is ensured by a high-precision, frequency-responsecompensated level control for levels higher than -20 dBm . The setting range can be extended to -130 dB with the optional RF Attenuator SMR-B15/SMR-B17.

Stable output frequency

The crystal reference built in as standard ensures an accurate, low-drift output frequency. SMR can be fitted with the optional OCXO Reference Oscillator SMR-B1 to satisfy the most stringent requirements on accuracy and aging.

SSB phase noise at 10 GHz

High output level saves you real cash All microwave test setups involve high losses caused by the use of long cables, power dividers, directional couplers and RF relays. Expensive microwave amplifiers are usually the only means to remedy this. But not with SMR: the high output power provided by all models eliminates the need for such costly component.

Application-oriented frequency resolution

 The standard frequency resolution of 1 kHz of SMR offers a comfortable margin for most applications, for example frequency response measurements in the laboratory and in production and servicing. To satisfy more stringent requirements, eg for scientific applications and research, option SMR-B3 is available to improve frequency resolution to 0.1 Hz .
Pulse modulator included

Pulse modulation is still the most important modulation mode for microwave applications. So, each of our basic units is equipped with a high-quality pulse modulator. The on/off ratio is better than 80 dB , the rise/fall time shorter than 12 ns . Pulse widths of less than 20 ns are possible. These guaranteed values make SMR ideal for use in the development, production and maintenance of radar equipment.

Pulse generator option

The optional Pulse Generator SMR-B14 is an ideal complement to the pulse modulator. It generates single and double pulses with pulse frequencies up to 10 MHz . The pulse generator can also be triggered externally and operated in the external gate mode. The pulse width and delay are freely selectable over a wide range.

Digital frequency and level sweeps

The digital frequency sweep with step times from 10 ms allows convenient frequency response measurements on microwave circuits. The start and stop frequencies are freely selectable. A trigger input enables synchronous operation with external equipment.

The 20 dB level sweep allows, for example, amplifier or mixer compression to be determined.

SMR as signal generator

The optional AM/FM/SCAN Modulator SMR-B5 added to the basic models furns them into fully-fledged signal generators with AM and FM modulation capability. The option also includes an LF generator for sinewave and squarewave signals in the range 0.1 Hz to 10 MHz .

FM and FSK

The FM modulator has a modulation bandwidth from DC to 5 MHz . Digital frequency shift keying (FSK) is possible with data rates from 0 to 2 MHz .

Simultaneous modulation modes

All modulation modes of SMR can be combined. This allows the generation of complex modulation signals for modern communication and location systems. The combination of pulse modulation and FM simulates Doppler effects or chirp signals. Simultaneous AM and pulse modulation provides the types of signal occurring in pulse radar applications with rotating antenna. The combination of FM and AM can be used to check fading effects of FM receivers.

[^0]
Analog ramp sweep option

The analog ramp sweep mode corresponds to the analog sweep of classical sweep generators except that the sweep is fully synchronized over the complete range. In this way, the excellent frequency accuracy of digital step sweeps is achieved on the whole, and this at much higher sweep rates of $\min .600 \mathrm{MHz} / \mathrm{ms}$ from 2 GHz on. In conjunction with scalar network analyzers or suitable spectrum analyzers, realtime adjustment of microwave filters can be performed.

To mark important frequency ranges such as filter bandwidths or the position of attenuation poles, SMR has 10 user-selectable frequency markers which can be output as pulse markers at the marker output (TTL level) or alternatively modulated on the RF level as level markers (level reduction of 1 dB).

Network analysis with SMR as synthesized sweeper

EasyWheel - the trick with the click

Transparent menu structure

The EasyWheel makes it extremely simple to operate the SMR user interface.

Just turn the wheel to go to the next menu item, then press the wheel to perform the desired function.

There is no easier way to operate a measuring instrument!

Specifications

Frequency

Range
SMR20
without option SMR-B 11
with option SMR-B 11
SMR27
without option SMR-B 11
with option SMR-B 11
SMR30
without option SMR-B 11
with option SMR-B 11
SMR4O
without option SMR-B 11
with option SMR-B 11
Resolution
without option SMR-B3
with option SMR-B3
Setting time (to within $<1 \cdot 10^{-6}$)
after IEC/IEEE-bus delimiter
Phase offset

Reference frequency

Aging (after 30 days of operation)
Temperature effect (0 to $55^{\circ} \mathrm{C}$)
Warmup time
Output for internal reference
Frequency
Level, $\mathrm{V}_{\text {rms }}$ (EMF, sinewave)
Source impedance
Input for external reference
Frequency
Permissible frequency error
Input level, $\mathrm{V}_{\text {rms }}$
Input impedance

Spectral purity

Spurious signals
Harmonics ${ }^{11}$

$\mathrm{f} \leq 20 \mathrm{GHz}$	<-55 dBc
$\mathrm{f}>20 \mathrm{GHz}^{2 /}$	$<-40 \mathrm{dBc}$
Subharmonics	
$\mathrm{f} \leq 20 \mathrm{GHz}$	$<-65 \mathrm{dBc}$
$\mathrm{f}>20 \mathrm{GHz}$	$<-30 \mathrm{dBc}$
Nonharmonics (>50 kHz from carrier)	
$\mathrm{f}<1 \mathrm{GHz}$	$<-60 \mathrm{dBc}$
1 GHz ... 2 GHz	$<-50 \mathrm{dBc}$
>2 GHz ... 10 GHz	$<-60 \mathrm{dBc}$
$>10 \mathrm{GHz} \ldots 20 \mathrm{GHz}$	<-54 dBc
$f>20 \mathrm{GHz}$	$<-48 \mathrm{dBc}$
($\mathrm{f}=10 \mathrm{GHz}, 10 \mathrm{kHz}$ from carrier, 1 Hz bandwidth, CW, FM off)	
Residual FM, rms ($\mathrm{f}=10 \mathrm{GHz}$, FM off)	
0.3 kHz to 3 kHz	$<20 \mathrm{~Hz}$
0.03 kHz to 20 kHz	$<200 \mathrm{~Hz}$

1) SMR20: Level $<+5 \mathrm{dBm}$ without resp. $<+3 \mathrm{dBm}$ with option SMR-B23. SMR27/30/40: Level $<+2 \mathrm{dBm}$ without resp. $<+0 \mathrm{dBm}$ with option SMR-B24.
${ }^{2)}$ Specifications for harmonics above 20 GHz (SMR20), 27 GHz (SMR27), 30 GHz (SMR30) and 40 GHz (SMR40) only typical.

Level

Maximum level without option SMR-B23/-B24 ${ }^{11}$

Frequency range	SMR20		SMR27/30/40	
	without	with option	without option	with option
	option	SMR-B15	SMR-B15/-B17	SMR-B15/
	SMR-B15			-B17
0.01 to <1 GHz	$>+13 \mathrm{dBm}$		$>+12 \mathrm{dBm}$	
1 to $<18 \mathrm{GHz}$	$>+11 \mathrm{dBm}$	$>+10 \mathrm{dBm}$	$>+8 \mathrm{dBm}$	$>+7 \mathrm{dBm}$
18 to 20 GHz	$>+10 \mathrm{dBm}$	$>+8 \mathrm{dBm}$	$>+7 \mathrm{dBm}$	$>+5 \mathrm{dBm}$
>20 to 27 GHz	-	-	$>+11 \mathrm{dBm}$	$>+9 \mathrm{dBm}$
>27 to 30 GHz	-	-	$>+9 \mathrm{dBm}$	$>+7 \mathrm{dBm}$
>30 to 40 GHz	-	-	$>+9 \mathrm{dBm}$	$>+7 \mathrm{dBm}$

Maximum level w		23		nput off ${ }^{1 /}$
Frequency range	SMR		SMR27	/40
	without option	with option SMR-B15	without option SMR-B15/-B17	with option SMR-B15/
	SMR-B15			B17
0.01 to <1 GHz	$>+13$	dBm	>+12	Bm
1 to <18 GHz	$>+10 \mathrm{dBm}$	$>+9 \mathrm{dBm}$	$>+7 \mathrm{dBm}$	$>+6 \mathrm{dBm}$
18 to 20 GHz	$>+8 \mathrm{dBm}$	$>+6 \mathrm{dBm}$	$>+5 \mathrm{dBm}$	$>+3 \mathrm{dBm}$
>20 to 27 GHz	-	-	$>+8 \mathrm{dBm}$	$>+6 \mathrm{dBm}$
>27 to 30 GHz	-	-	$>+6 \mathrm{dBm}$	$>+4 \mathrm{dBm}$
>30 to 40 GHz	-	-	$>+6 \mathrm{dBm}$	$>+4 \mathrm{dBm}$

1) With option SMR-B19/-B20 the maximum level is expected to be reduced by up to $0.1 \mathrm{~dB} / \mathrm{GHz}$. The maximum level is reduced by up to 2 dB in the temperature range $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Minimum level of all models

without option SMR-B15/B17	-20 dBm
with option SMR-B15/B17	-130 dBm
Resolution	0.1 dB or 0.01 dB , selectable

Total error (level $=0 \mathrm{dBm}$)
$f \leq 20 \mathrm{GHz} \quad< \pm 1 \mathrm{~dB}$
$< \pm 1.4 \mathrm{~dB}$
Frequency response (level $=0 \mathrm{dBm}$) $\quad< \pm 0.5 \mathrm{~dB}$, typ. $< \pm 0.3 \mathrm{~dB}$
$\mathrm{f} \leq 20 \mathrm{GHz}^{1)}$
$f>20 \mathrm{GHz} \quad< \pm 0.7 \mathrm{~dB}$, typ. $< \pm 0.4 \mathrm{~dB}$

Impedance $\quad 50 \Omega$
SWR <2

Setting time after IEC/IEEE-bus delimiter $<10 \mathrm{~ms}$
with option SMR-B15/B17, with switching $<25 \mathrm{~ms}$
in attenuator
Range for non-interrupting level setting $\quad>20 \mathrm{~dB}$

1) In the frequency range 10 MHz to 50 MHz the given total error is only valid in the temperature range $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. Out of this temperature range the error is expected to be max. 0.7 dB higher.

Linear amplitude modulation with option SMR-B5

Operating modes
Modulation depth ${ }^{1 /}$
Resolution
Setting error (AF $=1 \mathrm{kHz}, \mathrm{m}<80 \%)^{2)}$
AM distortion ($\mathrm{AF}=1 \mathrm{kHz}, \mathrm{m}=60 \%)^{2)}$
$\mathrm{f}<1 \mathrm{GHz} \quad<3 \%$
$\mathrm{f} \geq 1 \mathrm{GHz} \quad<1 \%$
Modulation frequency response $(m=60 \%)^{2)}$
$\mathrm{f}<1 \mathrm{GHz}$
DC to $50 \mathrm{kHz} \quad<3 \mathrm{~dB}$
$\mathrm{f} \geq 1 \mathrm{GHz}$
20 Hz to $20 \mathrm{kHz} \quad<1 \mathrm{~dB}$
DC to $100 \mathrm{kHz} \quad<3 \mathrm{~dB}$
Incidental φM with $A M$, peak value $<0.4 \mathrm{rad}$
($\mathrm{AF}=1 \mathrm{kHz}, \mathrm{m}=30 \%$)
EXT1, EXT2 modulation input
Input impedance
600Ω or $100 \mathrm{k} \Omega$
Input voltage V_{p} for selected modulation depth 1 V (high/low indication for inaccuracy $>3 \%$)

1) The modulation depth adjustable within the AM specifications continuously decreases from 6 dB below the maximum level up to the maximum level.
${ }^{2)}$ This specification does not apply
a) to non-interrupting level setting (ATTENUATOR MODE FIXED) if option SMP-B15/-B17 is used, b) to levels below -7 dBm without option SMP-B15/-B17, c) to external level control mode (EXT ALC).

Logarithmic amplitude modulation with option SMR-B5 (SCAN AM)
Operating modes
internal, externa
Dynamic range
Sensitivity
Resolution
Rise/fall time (10/90\%)
EXT1, EXT2 modulation input
Input impedance
$\pm 0.1 \mathrm{~dB} / \mathrm{V}$ to $\pm 10 \mathrm{~dB} / \mathrm{V}$
0.01 dB
$<10 \mu \mathrm{~s}$
600Ω or $100 \mathrm{k} \Omega$
-6 V to +6 V

Frequency modulation with option SMR-B5
Operating modes
internal, external AC/DC
Maximum deviation

$\leq 15.625 \mathrm{MHz}$	$(\mathrm{N}=-8)$	39.0625 kHz
$>15.625 \mathrm{MHz}$ to 31.25 MHz	$(\mathrm{N}=-7)$	78.125 kHz
$>31.25 \mathrm{MHz}$ to 62.5 MHz	$(\mathrm{N}=-6)$	156.25 kHz
$>62.5 \mathrm{MHz}$ to 125 MHz	$(\mathrm{N}=-5)$	312.5 kHz
$>125 \mathrm{MHz}$ to 250 MHz	$(\mathrm{N}=-4)$	625 kHz
$>250 \mathrm{MHz}$ to 500 MHz	$(\mathrm{N}=-3)$	1.25 MHz
$>500 \mathrm{MHz}$ to $<1 \mathrm{GHz}$	$(\mathrm{N}=-2)$	2.5 MHz
1 GHz to 2 GHz	$(\mathrm{N}=-1)$	5 MHz
$>2 \mathrm{GHz}$ to 10 GHz	$(\mathrm{N}=0)$	10 MHz
$>10 \mathrm{GHz}$ to 20 GHz	$(\mathrm{N}=1)$	20 MHz
f>20 GHz	$(\mathrm{N}=2)$	40 MHz
Resolution		$<1 \%$, min. 10 Hz
Setting error $(\mathrm{AF}=1 \mathrm{kHz})$		$<5 \%$ of reading +20 Hz

Setting error (AF = 1 kHz)
$<5 \%$ of reading +20 Hz
FM distortion ($\mathrm{AF}=1 \mathrm{kHz}$, half maximum $<0.5 \%$
deviation)

Modulation frequency range	DC to 5 MHz
Modulation frequency response	$<3 \mathrm{~dB}$
Carrier frequency offset with FM	$100 \cdot 2^{\mathrm{N}} \mathrm{Hz}+1 \%$ of deviation
EXT1, EXT2 modulation input	
Input impedance	600Ω or $100 \mathrm{k} \Omega$
Input voltage V_{p} for selected deviation	1 V (high/low indication for inaccuracy $>3 \%$)

ASK modulation with option SMR-B5

Operating modes
Maximum modulation depth
Resolution
Data rate
Rise/fall time (10\% / 90\%)
EXT1 modulation input
Input impedance
Input level

FSK modulation with option SMR-B5

Operating modes
Maximum deviation
Resolution
Data rate
Rise/fall time (10\% / 90\%)
EXT1 modulation input
Input impedance
Input level

external
 90\%
 0.1\%
 0 to 200 kHz
 $<10 \mu \mathrm{~s}$
 600Ω or $100 \mathrm{k} \Omega$
 TTL signal, selectable polarity

Pulse modulation

Operating modes	external, internal with option SMR-B14	
On/off ratio	$>80 \mathrm{~dB}$	
Rise/fall time (10\% / 90\%)	$62,5 \mathrm{MHz}$ to 125 MHz : $>125 \mathrm{MHz}$ to 450 MHz : $>450 \mathrm{MHz}$:	$\begin{aligned} & <50 \mathrm{~ns}^{11} \\ & <20 \mathrm{~ns}^{11} \\ & <12 \mathrm{~ns}^{11} \end{aligned}$
Pulse repetition frequency	$62,5 \mathrm{MHz}$ to 125 MHz : $>125 \mathrm{MHz}$ to 450 MHz : $>450 \mathrm{MHz}$:	≤ 0 to 1 MHz ≤ 0 to 2 MHz ≤ 0 to 10 MHz
Minimum pulse width	$20 \mathrm{~ns}^{1 /}$	
Pulse delay	typ. 50 ns	
Video feedthrough $U_{p p}$ PULSE modulation input	$<20 \mathrm{mV}$	
Input level Input impedance	TTL signal 50Ω or $10 \mathrm{k} \Omega$	

1) Only valid if level control set to OFF (ALC OFF)

Simultaneous modulation

FM (FSK) is independent of AM (SCAN AM, ASK) and pulse modulation. Reduced AM bandwidth for simultaneous AM (SCAN AM, ASK) and pulse modulation.

IF input option SMR-B23/-B24
SMR-B23
SMR-B24

IF input		
Frequency range		DC to 700 MHz
Level	$<0 \mathrm{dBm}$	
SWR	<2	

1) The RF output level can be lowered from 0 dB to 110 dB in steps of 10 dB with option SMR-B15/-B17.
external
10. $2^{\mathrm{N}} \mathrm{MHz}$
$<1 \%$, min. 10 Hz
0 to 2 MHz
$<10 \mu \mathrm{~s}$
600Ω or $100 \mathrm{k} \Omega$
TTL signal, selectable polarity

Memory for instrument setups	
Storable setups	50
Memory sequence modes	automatic, single-shot, manual or externally triggered Step time
Resolution 50 ms to 60 s	
	1 ms
Remote control	
System	IEC 625 (IEEE 488)
Command set	SCPI 1995.0
Connector	24 -contact Amphenol
IEC/IEEE-bus address	0 to 30
Interface functions	SH1, AH1, T6, L4, SR1, RL1, PP1, DC 1, DT1, CO

General data

Temperature stressing
Specifications met in range
Storage temperature range

Climatic stressing

Damp heat
Mechanical stressing
Sinewave vibration
Random vibration
Shock
Electromagnetic compatibility
Leakage (carrier frequency $<1 \mathrm{GHz}$)
Radiated susceptibility

Power supply

Safety
Dimensions (WxHxD)
Weight

Ordering information

Order designation

Accessories supplied

Options
OCXO Reference Oscillator
Frequency Resolution 0.1 Hz
Ramp Sweep
AM/FM/SCAN Modulator
Frequency Extension 0.01 GHz to $1 \mathrm{GHz}^{1)}$ Pulse Generator
RF Attenuator $20 \mathrm{GHz}(\mathrm{SMR20} / 27)^{1 /}$
RF Attenuator $40 \mathrm{GHz}(\mathrm{SMR30} / 40)^{11}$
Rear Connectors for RF, AF (SMR20/27) ${ }^{1 /}$
Rear Connectors for RF, AF (SMR30/40) ${ }^{1)}$
IF Input $20 \mathrm{GHz}(\mathrm{SMR20})^{1 /}$
IF Input $40 \mathrm{GHz}(\mathrm{SMR27} / 30 / 40)^{1 /}$
Recommended Extras
service kit
19" rack adapter
Adapter (SMR20/27)
3.5 mm female
3.5 mm male
N female
N male
Adapter (SMR30/40)
2.9 mm female
2.9 mm male
N female
N male
1) Factory-fitted option.

$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; according to IEC68-2-1 and IEC68-2-2 $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
95% relative humidity at $+40^{\circ} \mathrm{C}$; according to IEC68-2-3

5 Hz to 150 Hz , max. 2 g at 55 Hz , max. 0.5 g from 55 Hz to 150 Hz , according to IEC68-2-6, IEC1010-1 and MIL-T-28800D, class 5
10 Hz to 300 Hz , acceleration 1.2 g (RMS)
40 g shock spectrum, according to MIL-STD-810 D, MIL-T-28800D, class $3 / 5$
according to EN 50081-1 and EN 50082-2 (EMC directive of EU)
$<0.1 \mu \mathrm{~V}$ (induced in a two-turn coil 25 mm in diameter at a distance of 25 mm from any surface of the enclosure) $10 \mathrm{~V} / \mathrm{m}$

100 V to $120 \mathrm{~V}(\mathrm{AC}), 50 \mathrm{~Hz}$ to $60 \mathrm{~Hz}, 200 \mathrm{~V}$ to $240 \mathrm{~V}(\mathrm{AC}), 50 \mathrm{~Hz}$ to 60 Hz , autosetting to AC voltage, max. 200 VA
according to DIN EN 61010-1, IEC 1010-1, UL $3111-1$, CSA 22.2 No. 1010-1
$426.7 \mathrm{~mm} \times 87.6 \mathrm{~mm} \times 450 \mathrm{~mm}$
$<12 \mathrm{~kg}$ when fully equipped

Signal Generator SMR20	1104.0002 .20
Signal Generator SMR27	1104.0002 .27
Signal Generator SMR30	1104.0002 .30

Signal Generator SMR30 1104.0002.30
Signal Generator SMR40
1104.0002.40
power cable, operating manual
female adapter 3.5 mm (SMR20/SMR27)
female adapter 2.9 mm (SMR30/40)

SMR-B1	1104.5485 .02
SMR-B3	1104.5585 .02
SMR-B4	1104.5685 .02
SMR-B5	1104.3501 .02
SMR-B11	1104.4250 .02
SMR-B14	1104.3982 .02
SMR-B15	1104.4989 .02
SMR-B17	1104.5233 .02
SMR-B19	1104.6281 .02
SMR-B20	1104.6381 .02
SMR-B23	1104.5804 .02
SMR-B24	1104.6100 .02
SMR-Z1	1103.9506 .02
ZZA-211	1096.3260 .00
	1021.0512 .00
	1021.0529 .00
	1021.0535 .00
	1021.0541 .00
	1036.4790 .00
	1036.4802 .00
	1036.4777 .00
	1036.4783 .00

\square	Please send me an offer
\square	I would like a demo
\square	Please call me
\square	I would like to receive your free-of-charge CD-ROM catalogs

Others: \qquad
\qquad

Name:
Company/Department:
Position:
Address:
\qquad

[^0]: Typical max. output level as a function of frequency (with optional SMR-B15/-B17)

